
Modularization of Logic Programs

Alexandre Miguel Pinto1 and Luís Moniz Pereira2

1Outra Limited UK, ORCID: 0000-0003-0577-0939 and
2NOVA LINCS, Universidade Nova de Lisboa, Portugal,

ORCID: 0000-0001-7880-4322

Abstract. Standard software and knowledge engineering best practices
advise for modularity because, amongst other benefits, it facilitates de-
velopment, debugging, maintenance, composition and interoperability.
Knowledge bases written as Logic Programs are no exception, and their
corresponding semantics should enable such modularity. In this paper
we formally define several new syntactical notions and semantics prop-
erties that capture the notions of modularity and separation of concerns
applied to the LPs domain. Furthermore, we set forth other notions nec-
essary for top-down, call-graph oriented existential query answering with
2-valued semantics for LPs with Integrity Constraints.
Keywords: Modularization, Logic Programs, Credulous Reasoning, Prop-
erties, Semantics

1 Introduction

1.1 Context

Both in the academia and in the industry, development of intelligent software
systems is becoming increasingly more frequent due to the need to offer systems
and services that deliver more value to the end user. Larger and more distributed
teams collaborate in the development of such systems, including the Knowledge
Bases (KBs) they are built upon. In this paper we focus on the usage of Logic
Programs (LPs) as the means to encode the KBs and the usual credulous and
sceptical reasoning tasks as the mechanisms to solve the computational problem
the system is intended to. LPs have been used successfully to represent and solve
several kind of problems including combinatorial search, planning, abduction,
diagnosis, constraint solving and many others.

The different kinds of problems and the respectively distinct intended usages
of the LP-based systems require different reasoning mechanisms. Whenever the
LP-based system is intended to allow the user to explore alternative scenarios
a 2-valued semantics, e.g., Stable Models (SMs) [5], is the adequate choice for
the LP as, in general, these allow for more than one model. Under this setting
the individual models can represent the different scenarios. Credulous reasoning
can then be used to find one, or more, of the individual models that satisfy a
user’s query. On the other hand, if the intended usage of the LP-base system
is to provide irrefutable answers, and warranted knowledge to the user, then a



3-valued semantics, like the Well-Founded Semantics (WFS) [4], may be more
adequate as these usually provide exactly one model — sceptical reasoning allows
the user to find out what consequences necessarily follow from the KB and is
commonly implemented as checking if the user’s query is entailed by the single
3-valued (sceptical) model, and where Integrity Constraints (ICs), in the form
of denials, can then be satisfied when their bodies are false but also if undefined
[7].

Basic notions : We consider here the usual notions of alphabet, language, atom,
literal, rule, and (logic) program. A literal is either an atom A or its default
negation not A. We dub default literals (or default negated literals — DNLs, for
short) those of the form not A. Without loss of generality we consider only ground
Normal Logic Programs (NLPs), which are sets of Normal Logic Rules (NLRs)
of the form H ← B1, . . . , Bn, not C1, . . . , not Cm, (with m,n ≥ 0 and finite)
where H, the Bi and the Cj are ground atoms. In conformity with the stan-
dard convention, we write rules of the form H ← also simply as H (known as
“facts”). An NLP P is called definite if none of its rules contain default literals.
If r is a rule we denote its head H by head(r), and body(r) denotes the set
{B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in its body. We write HP to
denote the Herbrand Base of P .

Besides containing normal rules as above, LPs may also include rules with a
non-empty body and where the head is the special symbol ⊥ which are known as
a type of Integrity Constraints (ICs), specifically denials, and they are normally
used to prune out unwanted models of the normal rules part. An LP is thus the
union of a set of normal rules with a (possibly empty) set of ICs.

1.2 Motivation

The development of LP-based intelligent systems are software engineering projects
and as these, their teams, and the KBs developed grow larger, the adoption of
the best practices and principles of the software engineering discipline become
indispensable if one wishes to guarantee certain qualities of the overall intelligent
system. In particular, the development and usage of the LP-based KB part must
itself be subject to compliance with those guidelines. In this paper we focus on
the assurance of the principles of Modularity and Separation of Concerns in LP-
based KBs. We will see in the sequel that adopting these principles and ensuring
those qualities in an LP-based KB has a number of implications regarding the
properties the particular LP semantics must comply with, depending on whether
it is a 3-valued or a 2-valued one. Our main goal within this paper is precisely
to contribute with the definitions of those formal properties of semantics for
LPs which ensure Modularity and Separation of Concerns, and to provide with
mechanisms to define such semantics.

The approach we follow in the remainder of the paper goes as follows. First,
we recap the most common properties of semantics in the literature [3] that
are related to the principles of Modularity and Separation of Concerns. Since
the concept of Modularity is intrinsically related to the notion of modules, or



components, and their interdependencies, we translate these dependencies no-
tions to the domain of LPs and in that regard we recap the definitions in the
literature, define two new notions of syntactic structure of an LP and compare
them to the standard ones. We translate the concept of Separation of Concerns
into the LP domain by making explicitly distinct the role of Normal Logic Rules
and Integrity Constraints and show how this explicit distinction implies certain
properties of the semantics for the Normal Logic Rules part. Then we character-
ize the family of semantics complying with the properties we defined, compare
them to SMs, and show an algorithm to compute models of these semantics.
Final remarks and future work conclude the paper.

2 Background Review

2.1 Modularity and Separation of Concerns

Modularity and Separation of Concerns (henceforth abbreviated as Mod. and
SoC, respectively) are two of the central qualities required of software systems
developed according to the best practices of software engineering. Amongst other
benefits, a modular, i.e., a component-based, system is easier to develop, test,
debug, maintain, to compose, and to interoperate with others. According to [8]

Component-based software engineering is a reuse-based approach to defin-
ing, implementing, and composing loosely coupled independent compo-
nents into systems. A component is a software unit whose functionality
and dependencies are completely defined by a set of public interfaces.
Components can be composed with other components without knowledge
of their implementation and can be deployed as an executable unit.

From this definitions we can infer a module, or component, in such a “component-
based” system, should be easily replaceable by another with the same functional-
ity, as long as its interface and externally observable behavior remain the same;
modules can also be independently developed and later put together to form
the entire system. When translating these notions to LP-based KBs we need to
define what the modules are so that they exhibit these high (internal) cohesion
and low (external) coupling [6] characteristics. In section 3 we present new se-
mantical properties and syntactic structure notions that will allows us to define
such modules in LPs.

Also from [8] we learn that

The separation of concerns is a key principle of software design and
implementation. It means that you should organize your software so that
each element in the program (. . . ) does one thing and one thing only. You
can then focus on that element without regard for the other elements in
the program. You can understand each part of the program by knowing its
concern, without the need to understand other elements. When changes
are required, they are localized to a small number of elements.



From this definition it follows immediately that, in the LP domain (remember
we are considering a LP to be the union of a NLP with a set of ICs), the normal
rules in the NLP and the ICs are reifications of two very distinct Concerns:
that of generating alternative scenarios, and that of filtering out the undesired
candidates, respectively. Since it is the job of the ICs part to reject the bad
candidates, by the SoC principle, the NLP part, or any subset of it, must not be
allowed to prevent the existence of said candidates. Thus, compliance with the
SoC principle implies the semantics for the NLP must guarantee model existence;
to allow otherwise is to violate the SoC.

2.2 Semantics and Models

Taking the classical notions of (Herbrand) interpretation and model, [2] defines
(def. 2.4) a semantics of LPs as follows:

A semantics SEM is a mapping from the class of all programs into the
powerset of the set of all 3-valued Herbrand structures. SEM assigns to
every program a set of 3-valued Herbrand models of P

and also a sceptical entailment relation (def. 2.5) as:

Let P be a program and U a set of atoms. Any semantics SEM induces
a sceptical entailment relation SEMscept as follows:

SEMscept(U) :=
⋂

M∈SEMP (U)

{L : L is a pos. or neg. literal withM |= L}

where SEMP (U) = SEMP∪U , the set of models of P ∪U according to SEM . In
the following we write SEM(P ) to denote the set of all models of P according
to SEM , whereas SEMscept(P ) still denotes the intersection of all such models.
For LPs including ICs, every model M ∈ SEM(P ) is such that ⊥ /∈M .

In [2], and its subsequent paper [3], the author defines several properties
of semantics, including Relevance, Cumulativity, Modularity, and many others,
but all of these regard SEMscept, i.e., the intersection of all models of P ∪ U
according to SEM . When SEM is a 3-valued semantics, e.g., the WFS, SEM
already provides a single model, so in that case the intersection of all models
coincides with the unique model. When SEM is a 2-valued semantics this means
those properties pertain to the literals in the intersection of all 2-valued models
of the semantics; not to each individual 2-valued model. However, when we are
interested in using the individual 2-valued-models, e.g. for answering existential
queries, we need properties analogous to that of Relevance and Cumulativity, but
pertaining to individual models and not to their intersection. We have found no
such properties in the literature and so we provide them below as part of our
contribution. In [1] the authors stress the importance of the Cumulativity prop-
erty and define an alternative more credulous version of this property (dubbing it
Extended Cumulativity, ECM for short). They also show that the SM semantics
enjoys ECM although it does not enjoy cumulativity.



2.3 Syntactic Dependencies

In [3] the author introduced a notion of Modularity (def. 5.7) as a formal property
of semantics for LPs. We recap it here for self-containment, but first we need to
include other auxiliary syntactic notions.

Definition 1. Dependencies in a program. In a LP P , a rule r2 directly
depends on r1 (written as r2 ← r1) iff the head of r1 appears, possibly negated,
in the body of r2; we say r2 depends on r1 (r2 � r1) iff either r2 directly depends
on r1 or r2 directly depends on some other rule r3 which in turn depends on r1.

We also consider the other combinations of (direct) dependencies amongst
atoms and rules, and use the same graphical notation (←,�) to denote (direct,
indirect) dependency. Rule r directly depends on an atom a iff a appears, possibly
negated, in the body of r; and r depends on a iff either r directly depends on a
or r depends on some rule r′ which directly depends on a. An atom a directly
depends on rule r iff head(r) = a; and a depends on r iff either a directly depends
on r or a directly depends on some rule r′ such that r′ depends on r. An atom
b directly depends on atom a iff a appears (possibly default negated) in the body
of a rule with head b, and b depends on a iff either b directly depends on a, or b
directly depends on some rule r which depends on a.

In [3] Dix introduces the notion of relevant rules, which we restate here
adapted to our notation.

Definition 2. Sub-program Relevant for Atom. Let P be a NLP and a an
atom of P . We write RelP (a) to denote the set of rules of P which are relevant
and enough for determining a’s truth value. Formally, RelP (a) = {r ∈ P :
a depends on r}.

Also in [3] we find the notion of Program Reduction (def. 3.8) which is similar,
but not exactly equal, to the Gelfond-Lifschitz program division, and which will
be necessary to the Modularity notion.

Definition 3. P reduced by M (def. 3.8 of [3], adapted to our notation).
Let P be a program and M be a set of literals. “P reduced by M ” is the program
PM := {rM : r ∈ P and (body(r) ∪ M) is a consistent set of literals}, where
body(rM ) = body(r) \M .

Now that we have the notions of Relevant Part and P reduced by M we can
recap the notion of Modularity from [3].

Definition 4. Modularity (def. 5.7 of [3] adapted to meet our nota-
tion). Let P = P1 ∪ P2 be instantiated and for every A ∈ H2 : RelP (A) ⊆ P2.
The principle of Modularity is: SEMscept(P ) = SEMscept(P

SEMscept(P2)
1 ∪P2).

These syntactical and semantical notions do not capture all the various as-
pects of the Modularity and Separation of Concerns of software engineering
principles applied to LPs. For this reason we now introduce, as part of our con-
tribution, the new ones we find necessary for that purpose.



3 New notions and properties

The concept of Modularity is intrinsically related to the notion of modules, or
components, and their interdependencies, and in order to provide a rendering
of that concept in the LP domain we need to translate these dependencies into
syntactic features of LPs. The relevant rules (def. 2) syntactic notion does part
of this job but it still does not capture all the characteristics of a module. We
introduce below the formal notion of a Module as well as some of its syntactic
properties. Also, the semantical notion of modularity in def. 4, besides being
insufficient to fully grasp the Modularity concept applied to LPs, and like all
other semantical properties in [2] and [3], regards only the intersection of models,
and for that reason is suitable only for sceptical reasoning purposes. Since in
our work we are especially interested in existential query answering with 2-
valued semantics, we also provide new definitions of credulous reasoning oriented
semantical properties that capture the various aspects of Modularity.

As stated before, regarding the concept of Separation of Concerns, it trans-
lates into the LP domain by making explicitly distinct the role of Normal Logic
Rules from that of Integrity Constraints, and noticing this explicit distinction
entails the property of guarantee of model existence for the semantics for the
Normal Logic Rules part.

Finally, we introduce new notions supporting existential query answering
with LPs, both syntactic and semantical, which allow us to formally compose a
comprehensive framework for credulous reasoning with LPs (including ICs) with
semantics that comply with both the Modularity and Separation of Concerns
principles.

3.1 Modularity in Logic Programs

In a modular system, the components, or modules, have high internal cohesion
(the elements inside the module are tightly related), and low external coupling
(the elements from two distinct modules are lightly, if at all, related). The mod-
ularity semantical property in def. 4 does not capture all these requirements
associated with the Modularity principle.

In LPs we only have logic rules and the only dependency notion we can find
is a syntactical one. By taking the transitive closure over this syntactic depen-
dency, the relevance in def. 2 captures a part of the module concept according
to the description above, but not all of it. For this reason, we set forth a more
encompassing notion of module and examine some of its properties.

Definition 5. Modules of a Logic Program. Let P and P1 be LPs such that
P1 ⊆ P . P1 is said to be a module of P iff ∀a∈HP1

RelP (a) ⊆ P1. I.e., a module
of P is any subset of rules of P that contains all, and only, the rules relevant to
the atoms inside the module.

Let P1 and P2 be modules of P . We say P1 is nested inside P2 iff P1 ⊆ P2.
In this case we also say P1 is a sub-module of P2.

We say two modules P1 and P2 of P are independent iff they do not share
any atoms, i.e., HP1 ∩HP2 = ∅.



It follows from this definition that if modules P1 and P2 are independent,
then every sub-module of P1 is independent from every sub-module of P2. From
a system-wide analysis perspective, it might be of interest to identify the unique
set of maximal (w.r.t. set-inclusion) independent modules of a given program P
— we denote this set by MIM(P ).

With the above definition, the “components” inside modules (the individual
rules) are necessarily highly correlated, by virtue of syntactic dependency, thus
embodying the high internal cohesion demanded of modules. On the other hand,
the independent modules notion fully captures the low external coupling by
virtue of their syntactical independence.

Example 1. Modules in a program. Let P be

c← not a
a← not b
b← not a
x← y

The pair of rules a← not b and b← not a form a module P1 of P . P2 = P1∪{c←
not a} is another module, P3 = {x ← y} is yet another module, and the whole
program is also considered to be a module. P1 is nested inside P2, and every
module of P is nested inside P . In this example, P2 and P3 are independent, and
so are necessarily P1 and P3 as well.

As stated above, the Modularity property defined in [3] pertains to the scep-
tical entailment of a semantics SEM , i.e., when taking a 2-valued semantics, this
property is defined only over the intersection of all its models for a given pro-
gram. In our work, since we are intent on performing credulous reasoning with
a 2-valued semantics, we need a corresponding credulous version of modularity,
one that concerns each indvidual 2-valued-model, and not just the intersection
of all models. Hence, we introduce now several new semantical properties that
will be used to build our credulous modularity property.

Definition 6. Credulous Module Replaceability. Let P1, P2 and Px be LPs
such that P1 is a module of Px ∪ P1 and P2 is a module of Px ∪ P2, with
HP1 = HP2 , and let SEM be a 2-valued semantics for LPs. When SEM(P1) =
SEM(P2) — in which case we say P1 and P2 are SEM−equivalent — we say
SEM enjoys Credulous Module Replaceability iff SEM(Px∪P1) = SEM(Px∪
P2).

Intuitively this means one can replace one module of a program with another as
along as they have exactly the same models, all the while preserving the models
of the global program. This notion intends to capture the idea of functional
implementation independence of modules as far as interface and meaning are
preserved, which is characteristic of modular systems.

The following two notions (Credulous Monotony and Cartesian Product)
capture the black-box view on modules which allows the rapid composition of a
prototypical system by knowing the possible behaviors of its composing modules.



Definition 7. Credulous Monotony. Let P be an LP and P1 a module of P .
A 2-valued semantics SEM is said to enjoy Credulous Monotony iff

∀
M1∈SEM(P1)

{M : M ∈ SEM(P ) ∧M ⊇M1} = SEM((P \ P1) ∪M1)

Intuitively this means one can replace one module of the program by any one
of its models, and rest assured that the models of the resulting program are
exactly those models of the original program that set-included the model which
was used to replace the module.

The Stable Models semantics fails this property as the following example
shows.

Example 2. Stable Models fail Credulous Monotony. Let P be

a← not b
b← not a
c← not c, not a

P has {a} as its unique SM. The rules for a and b form a module P1 of P which
has two SMs: {a}, and {b}. If we replace P1 by its model {b} we obtain the
program P ′ =

b
c← not c, not a

which has no SMs at all, thus showing the failure of SM semantics regarding
Credulous Monotony.

Definition 8. Cartesian Product. Let P1 and P2 be independent modules of
P1 ∪ P2, and SEM a 2-valued semantics for LPs. SEM is said to enjoy the
Cartesian Product property iff

SEM(P1 ∪ P2) = {M1 ∪M2 : M1 ∈ SEM(P1) ∧M2 ∈ SEM(P2)}

I.e., models of unions of independent modules are unions of models of the individ-
ual modules. If #SEM(P1) = n and #SEM(P2) = m then #SEM(P1 ∪P2) =
nm, hence the name Cartesian Product.

Definition 9. Credulous Modularity. SEM is said to enjoy Credulous Mod-
ularity iff it enjoys all four properties of Credulous Module Replaceability, Cred-
ulous Monotony, Cartesian Product, and Model Existence (i.e., #SEM(P ) ≥ 1
for any given NLP P ).

This definition considers the concept of Credulous Modularity as including the
notion of Separation of Concerns (by demanding Model Existence for NLPs) as
one of its characteristics.



3.2 A framework for credulous reasoning with LPs

Credulous reasoning with LPs amounts to finding if there is some model M
of the program P at hand that satisfies some user-specified criteria Q. This
can either take the form of finding/computing one such model (if it exists), or
finding/computing one sub-model of it (i.e. subset of a model) sufficient to answer
the user’s query. The former is a common way to, e.g., address combinatorial
search problems, while the latter is more commonly used in top-down query-
answering a la Prolog.

In our work we focus on the latter approach which is only realizable with
semantics where the truth value of atoms in any given model depends only on
their relevant rules. The Relevance notion in def. 2 pertains only to the atoms
in the intersection of all models. What we need here is a “per-model” version of
the Relevance notion. We put if forward now.

Definition 10. Credulous Relevance. Let P be an NLP. SEM is Credulously
Relevant iff

∀
a∈HP

(
∀

M∈SEM(P )
a ∈M ⇒ ( ∃

Ma∈SEM(RelP (a))
Ma ⊆M ∧ a ∈Ma)

)
∧(

∀
Ma∈SEM(RelP (a))

∃
M∈SEM(P )

Ma ⊆M
)

I.e., in a Credulously Relevant semantics, an atom is true in some model of
the whole program iff it is true in some sub-model of the part of the program
relevant to the atom, where that sub-model is a subset of a model for the whole
program where the atom is true.

This notion, however, is applicable only to NLPs, but not whole LPs (which
may include ICs). When finding an existential answer to a query in a LP, it
might be the case that a candidate answer found may turn out to be rejected by
some IC. This means we need another notion of relevance that is applicable to
LPs with ICs. We now present this notion, preceded by other auxiliary ones.

Definition 11. Sub-program Influenced by Atom. Let P be a LP. We say
atom a ∈ HP influences rule r ∈ P iff r depends on a. We write InflP (a) to
denote the set of such r, i.e., InflP (a) = {r ∈ P : r � a}.

Definition 12. Constraint Directly Relevant Atoms. Let P = NLP ∪ICs
be a LP composed of the set of normal rules NLP and the set of ICs ICs, and
S ⊆ HP a subset of atoms of P . The set of atoms of P which are Constraint
Directly Relevant for S contains exactly all the atoms relevant for the ICs in P
which are influenced by the atoms in the Relevant part of P for any atom in S.

Due to its complexity, we breakdown this definition in intermediate steps as
follows. First we take each atom a of S and obtain the Relevant part of P for it.
Taking the union over all such atoms of S we obtain all the atoms of P relevant
for any atom in S, i.e., ⋃

a∈S
RelP (a)



Let us abuse notation are denote this set by RelP (S). Next we take all the atoms
in RelP (S), i.e., HRelP (S), and for each we find the rules of P which it influences,
thus obtaining ⋃

b∈HRelP (S)

InflP (b)

We abuse notation again and denote this set by InflP (S), and now we find which
ICs are included in this set of influenced rules, i.e., InflP (S) ∩ ICs, denoted
by ICInflP (S). Finally, we take all atoms in the rules of P which are relevant
to the atoms in ICInflP (S), to obtain the set of Constraint Directly Relevant
Atoms,

ICDirRelP (S) = H(
⋃

c∈HICInflP (S)
RelP (c))

Definition 13. Constraint Relevant Atoms. Let P = NLP ∪ ICs be a LP
composed of the set of normal rules NLP and the set of ICs ICs, and S ⊆ HP
a subset of atoms of P . The set of atoms of P which are Constraint Relevant
for S, denoted by ICRelP (S) is Sω, where

S0 = S
Si+1 = Si ∪ ICDirRelP (S

i)
Sα =

⋃
β<α S

β

Definition 14. Credulous Constraint Relevance. Let P be a LP. SEM is
Credulously Constraint Relevant iff

∀
a∈HP

M∈SEM(P )

a ∈M ⇒ ( ∃
Ma∈SEM(RelP (ICRelP ({a}))∪ICInflP ({a}))

Ma ⊆M∧a ∈Ma)
)

I.e., in a Credulously Constraint Relevant semantics, if an atom is true in some
model of the whole program then it is true in some sub-model of the part of the
program constraint relevant to the atom, where that sub-model is a subset of a
model for the whole program where the atom is true.

These definitions set forth a theoretical framework upon which formal exis-
tential query answering methods can be developed for LPs, including ICs, with
a 2-valued semantics.

Definition 15. Credulous Constraint Relevant Knowledge Existential
Answer to a Query. Let P = NLP ∪ ICs be a LP composed of the set of
normal rules NLP and the set of ICs ICs, and Q a set of literals formed with
atoms from HP dubbed the user’s query.

MQ is a credulous constraint relevant knowledge existential answer to query
Q according to SEM iff

MQ ∈ SEM(RelP (ICRelP (|Q|)) ∪ ICInflP (|Q|)) and MQ ⊇ Q

where |Q| denotes the set of atoms in the literals in Q, i.e.,

|Q| = {q : q ∈ Q ∨ not q ∈ Q}



The existence of a Credulous Constraint Relevant Knowledge Existential
Answer to a Query MQ does not necessarily guarantee the existence of a model
M of P such that M ⊇ MQ, but only because independent ICs might prevent
model existence at all. However, the credulous constraint relevance property still
ensures yet another local degree of modularity which might be used to focus the
scope of rules considered when answering an existential query.

4 Conclusions and Future Work

We have taken the concepts of Modularity and Separation of Concerns from the
software engineering discipline and applied them to the Logic Programs domain.
As a result we devised a set of semantical properties, and auxiliary syntactical
notions, that a 2-valued semantics for LPs must comply with in order to ensure
the LP respects those Modularity and SoC principles. We have provided new
notions of relevance and modularity that extend the ones in the literature in two
ways: by being applicable to individual models of a 2-valued semantics instead
of just to their intersection, and by taking into account also the possible ICs in
the LP. Future work includes the definition of a 2-valued semantics complying
with all these properties, and respective implementations.

5 Acknowledgements

L.M.P. is supported by NOVA LINCS (UIDB/04516/2020) with the financial
support of FCT- Fundação para a Ciência e a Tecnologia, Portugal, through
national funds.

References

1. Stefania Costantini, Gaetano Aurelio Lanzarone, and Giuseppe Magliocco. Layer
supported models of logic programs. In Michael Maher, editor, Procs. 1996 Joint
International Conference and Symposium on Logic Programming (JICSLP 1996),
pages 438–452, Cambridge, USA, 1996. MIT Press.

2. Jürgen Dix. A Classification Theory of Semantics of Normal Logic Programs: I.
Strong Properties. Fundamenta Informaticae, 22(3):227–255, 1995.

3. Jürgen Dix. A Classification Theory of Semantics of Normal Logic Programs: II.
Weak Properties. Fundamenta Informaticae, 22(3):257–288, 1995.

4. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. J. of ACM, 38(3):620–650, 1991.

5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In ICLP/SLP, pages 1070–1080. MIT Press, 1988.

6. M. Papazoglou and J. Yang. Design methodology for web services and business
processes. Technologies for E-Services, 2444:175–233, 2002.

7. L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Hypothetical reasoning with well
founded semantics. In B. Mayoh, editor, Scandinavian Conference on Artificial
Intelligence: Proc. of the SCAI’91, pages 289–300. IOS Press, Amsterdam, 1991.

8. Ian Sommerville. Software Engineering 9. Pearson Education, 2011.


